

Issue Date:	F
Ref. Report No.	IS

February 12, 2014 ISL-14HE043FA

Product Name	: Robust Computing System
Model(s)	: RCS-7422-610QW; RCS-7xxx; RCS-7400; RCS-7200; RCS-7220-610QW;
	RCS-7211-610QW
Applicant	: Vecow Co.,Ltd
Address	: 12F., No. 111, Zhongcheng Rd., Tucheng Dist., New Taipei City 23674 Taiwan
	(R.O.C)

We, International Standards Laboratory, hereby certify that:

The device bearing the trade name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified. (refer to Test Report if any modifications were made for compliance).

FC

Standards:

FCC CFR Title 47 Part 15 Subpart B: 2010- Section 15.107 and 15.109 ANSI C63.4-2009 Industry Canada Interference-Causing Equipment Standard ICES-003 Issue 5: 2012

Class A

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

International Standards Laboratory

Chu

Jim Chu / Director

Hsi-Chih LAB:
 No. 65, Gu Dai Keng St., Hsichih District,
 New Taipei City 22179, Taiwan
 Tel: 886-2-2646-2550; Fax: 886-2-2646-4641

FCC TEST REPORT

CFR 47 Part 15 Subpart B Class A

Product : Robust Computing System

Model(s): RCS-7422-610QW; RCS-7xxx; RCS-7400; RCS-7200; RCS-7220-610QW; RCS-7211-610QW

Applicant: Vecow Co.,Ltd

Address: 12F., No. 111, Zhongcheng Rd., Tucheng Dist., New Taipei City 23674 Taiwan (R.O.C)

Test Performed by:

International Standards Laboratory

<Hsi-Chih LAB> *Site Registration No. BSMI:SL2-IN-E-0037; SL2-R1/R2-E-0037; TAF: 1178 FCC: TW1067; IC: IC4067A-1; NEMKO: ELA 113A VCCI: <Conduction01>C-354, T-1749, <OATS01>R-341, <Chamber01>G-443 *Address: No. 65, Gu Dai Keng St. Hsichih District, New Taipei City 22179, Taiwan *Tel: 886-2-2646-2550; Fax: 886-2-2646-4641

Report No.: ISL-14HE043FA Issue Date : February 12, 2014

This report totally contains 25 pages including this cover page and contents page.

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.

ISL International Standards Laboratory http://www.isl.com.tw

Contents of Report

1. General		1
	ccuracy of Test Data	
1.2 Description of EU	Τ	2
1.3 Description of Sup	pport Equipment	4
1.4 Software for Cont	rolling Support Unit	5
1.5 I/O Cable Condition	on of EUT and Support Units	6
2. Powerline Condu	cted Emissions	7
2.1 Test Setup and Pro	ocedure	7
1		
	bectrum Analyzer Configuration (for the frequencies tested)	
	Data: Configuration 1	
1		
3. Radiated Emissio	ns	12
3.1 Test Setup and Pro	ocedure	12
1		
1 1	the Configuration (for the frequencies tested)	
	ta: Configuration 1	
1		
11		
11	ning Labels	
4.2 Appendix B: Warr	ning Statement	21
	Equipment	
	List	
	trolling Spectrum/Receiver and Calculating Test Data	
4.4 Appendix D: Unce	ertainty of Measurement	23

1. General

1.1 Certification of Accuracy of Test Data

Standards:	FCC CFR Title 47 Part 15 Subpart B: 2010- Section 15.107 and 15.109 ANSI C63.4-2009 Industry Canada Interference-Causing Equipment Standard ICES-003 Issue 5: 2012
Equipment Tested:	Robust Computing System
Model:	RCS-7422-610QW; RCS-7xxx; RCS-7400; RCS-7200; RCS-7220-610QW; RCS-7211-610QW
Applicant:	Vecow Co.,Ltd
Sample received Date:	January 21, 2014
Final test Date:	refer to the date of test data
Test Site:	International Standards Laboratory
	OATS 01; Chamber 01; Conduction 01
Test Distance:	10M; 3M (above1GHz)
Temperature:	refer to each site test data
Humidity:	refer to each site test data
Input power:	Conduction input power: AC 120 V / 60 Hz
	Radiation input power: AC 120 V / 60 Hz
Test Result:	PASS
Report Engineer:	Maggy Han
Test Engineer:	Sauistu

dens In

Louis Yu

Approved By:

Eddy Flsing Eddy Hsiung

1.2 Description of EUT

EUT

Product Name	Robust Computing System	
Condition	Pre-Production	
Model Number(s)	RCS-7422-610QW; RCS-7xxx; RCS-7400; RCS-7200;	
	RCS-7220-610QW; RCS-7211-610QW	
Serial Number	N/A	
Power Supply	Seasonic (Model: SSA-0901-24)	
	AC Input: 100-240V~ 2A , 50/60Hz	
	DC Output: +24V / 3.75A	
	MAX.POWER 90W	
CPU	Intel Core i7-3610QE 3.3GHz	
DRAM	two Vecow Wide-Temp DDR3 4GB RAM M340S-W28M1	
	(total in 8GB)	
Motherboard	Model: ECS-7900-MB	
Power Switch Button	one	
USB 2.0 Port	two 4-pins	
USB 3.0 Port	four 9-pins	
RJ45 Port	two 8-pins (10/100/1000M bps)	
Line-Out Port	one	
Line-In Port	one	
COM Port	four 9-pins	
Lsolated DIO Port	two 20-pins	
Display Port	two 20-pins	
DVI Port	one 29-pins	
D-SUB Port	one 15-pins	
Power - In	one 3-pins	
Ctrl + / -	one 3-pins	
Maximum Resolution	1920*1200	
Maximum Operating Frequency	3.3GHz	

Radiation & Conduction Test Configurations: We present the worst case test data (Configurations: 1) in the report.

Configurations	Display Type
1	DVI + Display*2
2	D-SUB + Display*2

EMI Noise Source

|--|

EMI Solution

Solution	Quantity	Specification	Location
Copper foil tape	2	TEX CHU 25x15x0.5mm	The same as Photo EUT-14
Copper foil tape	1	TEX CHU 50x18x0.5mm	The same as Photo EUT-15
Copper foil tape	2	TEX CHU 25x7x0.5mm	The same as Photo EUT-16
Gasket	2	TEX CHU 25x5x4mm	The same as Photo EUT-17
Core	1	King Core(K5B	The same as Photo EUT-18
		35x19x18mm)	

1.3 Description of Support Equipment

Unit	Model Serial No.	Brand	Power Cord	FCC ID
Keyboard	SK-8115, S/N: MY-05N456-38843-2BK-331 5	DELL	N/A	FCC DOC
Mouse	MO71KC S/N: 511092011	DELL	N/A	FCC DOC
Modem*4	DM1414 S/N: 0301000557 0301000558 0301000559 0301000560		Non-shielded, Without Grounding Pin	IFAXDM1414
USB3.0 External HDD Enclosure*4	WDBACY5000ABK-PESN S/N: XH1E31FSV80	WD	N/A	FCC DOC
Headphone & Microphone	CD-85	JS	Non-shielded, Detachable	FCC DOC
Notebook Personal Computer	U36JC S/N: N/A	ASUS	Non-shielded, Detachable	FCC DOC
Rack mountable Switch	DGS-1008D	D-Link	Non-shielded, Detachable	FCC DOC
24" LCD Monitor*2	U2413f S/N: N/A	DELL	Non-Shielded, Detachable	FCC DOC
24" LCD Monitor	2410U S/N: N/A	DELL	Non-shielded, Detachable	FCC DOC

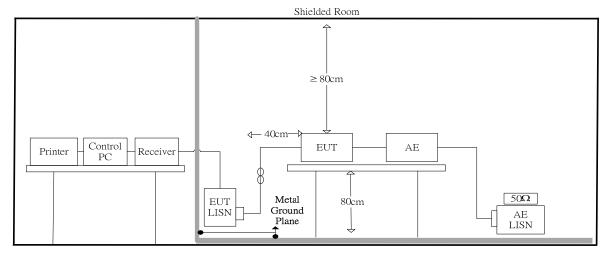
1.4 Software for Controlling Support Unit

Test programs exercising various part of EUT were used. The programs were executed as follows:

- A. Send H pattern to the Display port device (Monitor).
- B. Send H pattern to the DVI port device (Monitor).
- C. Send H pattern to the D-SUB port device (Monitor).
- D. Send H pattern to the serial port device (Modem).
- E. Send audio signal to the Microphone and HeadSet through Headphone port.
- F. Receive audio signal from Microphone and HeadSet through Microphone port.
- G. Read and write to the disk drives.
- H. Send package to the Router RJ45 port (Router).
- I. Receive and transmit package of EUT to the Rack mountable Switch HUB through RJ45 port.
- J. Used Tfgen.exe to send signal to EUT RJ45 port through Notebook RJ45 Port.
- K. Read and write data in the USB3.0 Hard Disk through EUT USB3.0 port.
- L. Repeat the above steps.

	Filename	Issued Date
USB3.0 External HDD Enclosure	IntelEMC TEST.exe	7/13/2009
RJ45	ping.exe	5/05/1999
RJ45	Tfgen.exe	6/23/1999
ATA Microphone and HeadSet	Windows Media player.exe	2/18/2006
Monitor	IntelEMC TEST.exe	7/13/2009
Modem	IntelEMC TEST.exe	7/13/2009
EUT Hard Disk	IntelEMC TEST.exe	7/13/2009

1.5 I/O Cable Condition of EUT	and Support Units
--------------------------------	-------------------


Description	Path	Cable Length	Cable Type	Connector Type
AC Power Cord	110V (~240V) to EUT SPS	1.8M	Non-shielded, Detachable	Plastic Head
USB3.0 Data Cable*4	USB3.0 External HDD Enclosure USB 3.0 Port to EUT USB 3.0Port	1M	Shielded, Detachable	Metal Head
RJ45 Data Cable*2	EUT RJ45 Port to Switch HUB RJ45 Port	10M	Non-shielded, Detachable	RJ-45, with Plastic Head
RJ45 Data Cable	Switch HUB RJ45 port to Notebook RJ45 Port	1M	Non-shielded, Detachable	RJ-45, with Plastic Head
Modem Data Cable*4	Modem to EUT COM port	1.5M	Shielded, Detachable	Metal Head
Keyboard Data Cable	Keyboard to EUT USB2.0 Port	2.0M	Shielded, Un-detachable	Metal Head
Mouse Data Cable	Mouse to EUT USB2.0 Port	1.8M	Shielded, Un-detachable	Metal Head
Microphone& Audio Data Cable*2	Microphone to EUT Microphone Port	1.9M	Non-shielded, Un-detachable	Plastic Head
LCD Monitor Data Cable	LCD Monitor D-Sub Port to EUT D-Sub Port	1.88M	Shielded, Detachable	Metal Head
LCD Monitor Data Cable	LCD Monitor DVI Port to EUT DVI Port	1.8M	Shielded, Detachable	Metal Head
LCD Monitor Data Cable*2	LCD Monitor Display Port to EUT Display Port	1.9M	Shielded, Detachable	Metal Head
lsolated DIO load Cable*2	EUT lsolated DIO Port with Dummy	1 M	Shielded, Detachable	Metal Head

2. Powerline Conducted Emissions

2.1 Test Setup and Procedure

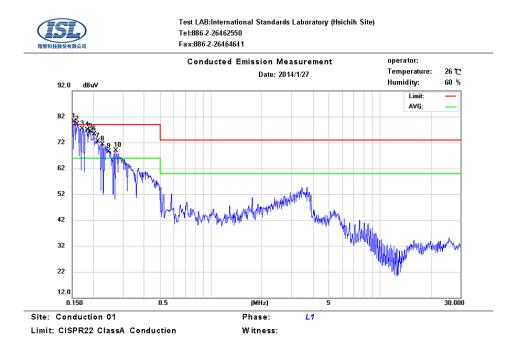
2.1.1 Test Setup

2.1.2 Test Procedure

The measurements are performed in a $3.5m \ge 3.4m \ge 2.5m$ shielded room, which referred as Conduction 01 test site, or a $3m \ge 3m \ge 2.3m$ test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction 1.0m $\ge 1.5m$ table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (500hm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

The interconnecting cables were arranged and moved to get the maximum measurement. Both the line of power cord, hot and neutral, were measured. All of the interface cables were manipulated according to ANSI C63.4 requirements.


The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	150KHz~30MHz
Detector Function:	Quasi-Peak / Average Mode
Resolution Bandwidth:	9KHz

2.2 Conduction Test Data: Configuration 1 Table 2.2.1 Power Line Conducted Emissions (Line)

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	0.15	9.66	57.49	79.00	-21.51	34.35	66.00	-31.65	
2	0.16	9.66	56.59	79.00	-22.41	40.57	66.00	-25.43	
3	0.17	9.66	57.94	79.00	-21.06	45.78	66.00	-20.22	
4	0.18	9.66	53.58	79.00	-25.42	31.02	66.00	-34.98	
5	0.19	9.66	48.72	79.00	-30.28	29.33	66.00	-36.67	
6	0.20	9.66	45.53	79.00	-33.47	22.22	66.00	-43.78	
7	0.21	9.66	35.42	79.00	-43.58	17.82	66.00	-48.18	
8	0.23	9.67	45.94	79.00	-33.06	28.21	66.00	-37.79	
9	0.25	9.67	50.79	79.00	-28.21	35.54	66.00	-30.46	
10	0.27	9.67	39.39	79.00	-39.61	23.01	66.00	-42.99	

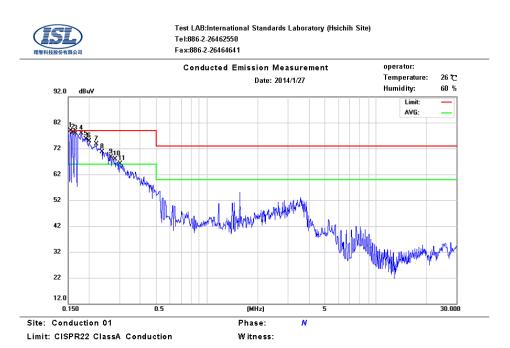
Note:

Margin = QP/AVG Emission - Limit

QP/AVG Emission = Receiver Reading + Correct Factor

Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit


The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result. If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

The CISPR 22 limits would be applied to all FCC Part 15 devices.

International Standards Laboratory

Report Number: ISL-14HE043FA

Table 2.2.2 Power Line Conducted Emissions (Neutral)

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	0.15	9.74	57.43	79.00	-21.57	40.51	66.00	-25.49	
2	0.16	9.74	56.88	79.00	-22.12	48.06	66.00	-17.94	
3	0.17	9.74	57.40	79.00	-21.60	50.31	66.00	-15.69	
4	0.18	9.74	53.37	79.00	-25.63	38.33	66.00	-27.67	
5	0.19	9.74	54.21	79.00	-24.79	34.35	66.00	-31.65	
6	0.20	9.74	55.28	79.00	-23.72	31.24	66.00	-34.76	
7	0.22	9.74	51.94	79.00	-27.06	27.09	66.00	-38.91	
8	0.24	9.75	50.03	79.00	-28.97	43.38	66.00	-22.62	
9	0.27	9.75	45.99	79.00	-33.01	26.47	66.00	-39.53	
10	0.28	9.75	49.93	79.00	-29.07	26.36	66.00	-39.64	
11	0.30	9.75	47.28	79.00	-31.72	22.36	66.00	-43.64	

Note:

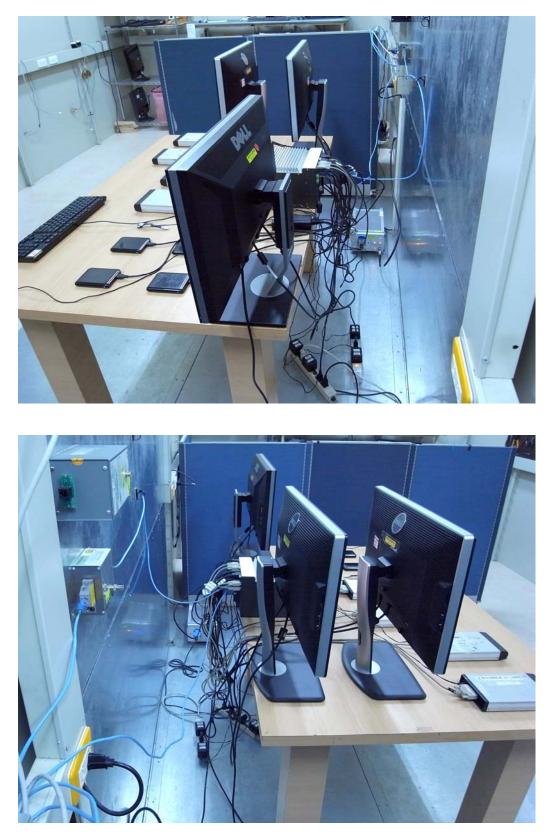
Margin = QP/AVG Emission - Limit

QP/AVG Emission = Receiver Reading + Correct Factor

Correct Factor = LISN Loss + Cable Loss

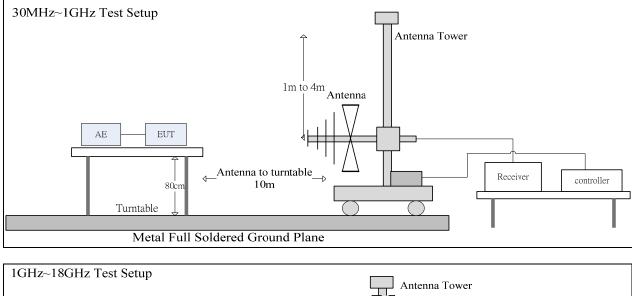
A margin of -8dB means that the emission is 8dB below the limit

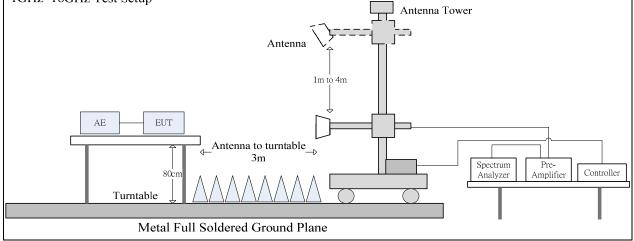
The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result. If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead. The CISPR 22 limits would be applied to all FCC Part 15 devices.


2.3 Test Setup Photo

Front View

Back View





3. Radiated Emissions

3.1 Test Setup and Procedure

3.1.1 Test Setup

3.1.2 Test Procedure

The radiated emissions test will then be repeated on the open site or chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of 10 meter open field sites or 10 meter chamber. Desktop EUT are set up on a wooden stand 0.8 meter above the ground or floor-standing arrangement shall be placed on the horizontal ground reference plane. The test volume for a height of up to 30 cm may be obstructed by absorber placed on the ground plane.

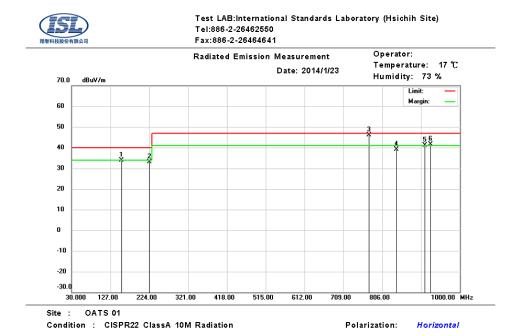
For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The highest emissions between 1 GHz to 40 GHz were analyzed in details by

International Standards Laboratory

Report Number: ISL-14HE043FA

operating the spectrum analyzer in peak and average mode to determine the precise amplitude of the emissions.

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the antenna in the cone of radiation from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response. At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum measurement. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings. All of the interface cables were manipulated according to ANSI C63.4 requirements.


The highest internal source of the EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes. If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 40 GHz, whichever is less. Spectrum Analyzer Configuration (for the frequencies tested).

3.1.3 Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	30MHz1000MHz
Detector Function:	Quasi-Peak Mode
Resolution Bandwidth:	120KHz
Frequency Range:	Above 1000MHz
Detector Function:	Peak/Average Mode
Resolution Bandwidth:	1MHz

International Standards Laboratory

3.2 Radiation Test Data: Configuration 1 Table 3.2.1 Radiated Emissions (Horizontal)

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	154.1600	20.29	13.70	33.99	40.00	-6.01	341	312	QP
2	223.8800	20.59	12.47	33.06	40.00	-6.94	265	279	QP
3	772.5600	22.12	24.08	46.20	47.00	-0.80	137	129	QP
4	840.9200	13.97	25.11	39.08	47.00	-7.92	100	313	QP
5	912.7000	15.12	26.01	41.13	47.00	-5.87	229	61	QP
6	926.2800	15.39	26.15	41.54	47.00	-5.46	198	245	QP

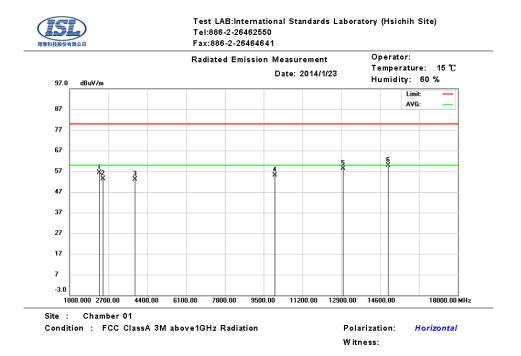
* Note:

Margin = Emission – Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit


BILOG Antenna Distance: 10 meters

The CISPR 22 limits would be applied to all FCC Part 15 devices.

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	2309.000	72.32	-15.91	56.41	80.00	-23.59	135	191	peak
2	2462.000	69.04	-15.63	53.41	80.00	-26.59	100	25	peak
3	3856.000	66.68	-13.55	53.13	80.00	-26.87	100	185	peak
4	9993.000	60.74	-5.52	55.22	80.00	-24.78	159	69	peak
5	12985.000	60.60	-2.29	58.31	80.00	-21.69	100	290	peak
6	14957.000	59.04	0.72	59.76	80.00	-20.24	150	57	peak

* Note:

Margin = Emission – Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Horn Antenna Distance: 3 meters

The CISPR 22 limits would be applied to all FCC Part 15 devices.

Above 1GHz test, if the peak measured value meets the average limit, it is unnecessary to perform the average measurement.

Table 3.2.2 Radiated Emissions (Vertical)

Condition : CISPR22 ClassA 10M Radiation Polarization: Vertical

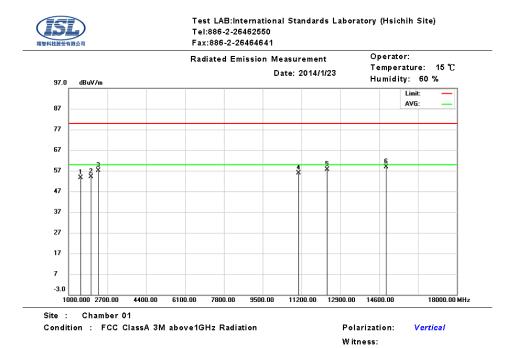
Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	32.9100	16.29	19.84	36.13	40.00	-3.87	359	205	QP
2	44.7600	26.57	11.35	37.92	40.00	-2.08	100	8	QP
3	120.2100	19.51	15.27	34.78	40.00	-5.22	100	0	QP
4	142.5200	24.25	14.43	38.68	40.00	-1.32	100	0	QP
5	154.1600	18.00	13.70	31.70	40.00	-8.30	100	0	QP
6	772.0500	17.15	24.07	41.22	47.00	-5.78	303	174	QP

* Note:

Margin = Emission – Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss


A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meters

The CISPR 22 limits would be applied to all FCC Part 15 devices.

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	1527.000	74.12	-20.56	53.56	80.00	-26.44	100	239	peak
2	1986.000	70.76	-16.61	54.15	80.00	-25.85	100	14	peak
3	2309.000	73.14	-15.91	57.23	80.00	-22.77	100	10	peak
4	11064.000	60.20	-4.26	55.94	80.00	-24.06	107	218	peak
5	12322.000	59.68	-2.08	57.60	80.00	-22.40	141	84	peak
6	14906.000	58.25	0.57	58.82	80.00	-21.18	196	120	peak

* Note:

Margin = Emission – Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Horn Antenna Distance: 3 meters

The CISPR 22 limits would be applied to all FCC Part 15 devices.

Above 1GHz test, if the peak measured value meets the average limit, it is unnecessary to perform the average measurement.

International Standards Laboratory

3.3 Test Setup Photo

Front View

Back View



Front View (above 1GHz)

Back View (above 1GHz)

4. Appendix

4.1 Appendix A: Warning Labels

Label Requirements

A Class A digital device subject to Verification of FCC shall carry a warning label which includes the following statement:

* * * W A R N I N G * * *

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

4.2 Appendix B: Warning Statement

Statement Requirements

The operators' manual for a Class A digital device shall contain the following statements or their equivalent:

* * * W A R N I N G * * *

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment This equipment generates, uses, and can radiate radio frequency energy and, if not installed and uses in accordance with the instruction manual, may cause harmful interference to radio communications Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Notice: The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equivalent.

* * * * * * * * *

If the EUT was tested with special shielded cables the operators manual for such product shall also contain the following statements or their equivalent:

Shielded interface cables and/or AC power cord, if any, must be used in order to comply with the emission limits.

4.3 Appendix C: Test Equipment

4.3.1 Test Equipment List

Location	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal.
CON01					Date	Date
Conduction	Coaxial Cable 1F-C1	HUBER SUHNER	RG214U	389942	10/25/2013	10/25/2014
Conduction	LISN 21	ROHDE & SCHWARZ	ENV216	101476	05/14/2013	05/14/2014
Conduction	LISN 22	ROHDE & SCHWARZ	ENV216	101478	05/14/2013	05/14/2014
Conduction	ISN T2 03	FCC	FCC-TLISN-T 2-02	20618	08/13/2013	08/13/2014
Conduction	ISN T4 05	FCC	FCC-TLISN-T 4-02	20619	08/13/2013	08/13/2014
Conduction	INS T8 07	Teseq GmbH	ISN T800	30834	06/01/2013	06/01/2014
Conduction	ISN T8 06 (Shielding)	Teseq GmbH	ISN ST08	33999	08/10/2013	08/10/2014
Conduction	EMI Receiver 15	ROHDE & SCHWARZ	ESCI	101166	04/30/2013	04/30/2014

Location	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal.
OATS01					Date	Date
Radiation	BILOG Antenna 10	Sumol	JB1	A013004-1	07/10/2013	07/10/2014
		Sciences				
Radiation	Coaxial Cable 3F-10M	EMCI	CFD400-NL	ISL-R001	03/15/2013	03/15/2014
Radiation	EMI Receiver 13	ROHDE &	ESCI	101015	02/26/2013	02/26/2014
		SCHWARZ				

Location	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal.
Chamber 01					Date	Date
Rad. above	Horn Antenna 11	ETS-LINDGR	3117	00114397	03/18/2013	03/18/2014
1Ghz		EN				
Rad. above	Horn Antenna 03	COM-Power	AH-826	08010	04/01/2013	04/01/2015
1Ghz						
Rad. above	Horn Antenna 05	Com-Power	AH-640	100A	01/09/2013	01/09/2015
1Ghz						
Rad. above	Microwave Cable-16	HUBER	SUCFLEX	345761/4	01/06/2014	01/06/2015
1Ghz		SUHNER	104			
Rad. above	Preamplifier 20	EMCI	EMC051845	980084	11/06/2013	11/06/2014
1Ghz						
Rad. above	Microwave Cable-19	HUBER	SUCFLEX	MY 2151/2	05/09/2013	05/09/2014
1Ghz		SUHNER	102			
Rad. above	Preamplifier 22	EMCI	EMC184045	980124	04/02/2013	04/02/2014
1Ghz						
Rad. above	Spectrum Analyzer 23	ROHDE &	FSU43	101255	11/07/2013	11/07/2014
1Ghz	-	SCHWARZ				

4.3.2 Software for Controlling Spectrum/Receiver and Calculating Test Data

Site	Filename	Version	Issue Date
Conduction/Radiation	EZ EMC	ISL-03A2	3/6/2013

4.4 Appendix D: Uncertainty of Measurement

The measurement uncertainty refers to CISPR 16-4-2:2011. The coverage factor k = 2 yields approximately a 95 % level of confidence.

<Conduction 01> AMN: ±3.28dB ISN T2: ±3.86dB ISN T4: ±4.27dB ISN T8: ±3.86dB <OATS 01 (10M)> Horizontal 30MHz~200MHz: ±3.36dB 200MHz~1000MHz: ±4.08dB Vertical 30MHz~200MHz: ±3.99dB 200MHz~1000MHz: ±4.16dB

<Chamber 01 (3M)> 1GHz~6GHz: ±4.70dB 6GHz~18GHz: ±4.91dB 18GHz~26.5GHz: ±4.34dB 18GHz~26.5GHz: ±4.38dB